extension | φ:Q→Out N | d | ρ | Label | ID |
(C7xD4).1C23 = C2xD8:3D7 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 224 | | (C7xD4).1C2^3 | 448,1209 |
(C7xD4).2C23 = D8:13D14 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 112 | 4 | (C7xD4).2C2^3 | 448,1210 |
(C7xD4).3C23 = C2xD7xSD16 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 112 | | (C7xD4).3C2^3 | 448,1211 |
(C7xD4).4C23 = C2xD56:C2 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 112 | | (C7xD4).4C2^3 | 448,1212 |
(C7xD4).5C23 = C2xSD16:D7 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 224 | | (C7xD4).5C2^3 | 448,1213 |
(C7xD4).6C23 = C2xSD16:3D7 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 224 | | (C7xD4).6C2^3 | 448,1214 |
(C7xD4).7C23 = D28.29D4 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 112 | 4 | (C7xD4).7C2^3 | 448,1215 |
(C7xD4).8C23 = D7xC4oD8 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 112 | 4 | (C7xD4).8C2^3 | 448,1220 |
(C7xD4).9C23 = D8:10D14 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 112 | 4 | (C7xD4).9C2^3 | 448,1221 |
(C7xD4).10C23 = D8:15D14 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 112 | 4+ | (C7xD4).10C2^3 | 448,1222 |
(C7xD4).11C23 = D8:11D14 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 112 | 4 | (C7xD4).11C2^3 | 448,1223 |
(C7xD4).12C23 = D8.10D14 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 224 | 4- | (C7xD4).12C2^3 | 448,1224 |
(C7xD4).13C23 = SD16:D14 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 112 | 8- | (C7xD4).13C2^3 | 448,1226 |
(C7xD4).14C23 = D8:5D14 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 112 | 8+ | (C7xD4).14C2^3 | 448,1227 |
(C7xD4).15C23 = D8:6D14 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 112 | 8- | (C7xD4).15C2^3 | 448,1228 |
(C7xD4).16C23 = D7xC8.C22 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 112 | 8- | (C7xD4).16C2^3 | 448,1229 |
(C7xD4).17C23 = D56:C22 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 112 | 8+ | (C7xD4).17C2^3 | 448,1230 |
(C7xD4).18C23 = C56.C23 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 112 | 8+ | (C7xD4).18C2^3 | 448,1231 |
(C7xD4).19C23 = D28.44D4 | φ: C23/C2 → C22 ⊆ Out C7xD4 | 224 | 8- | (C7xD4).19C2^3 | 448,1232 |
(C7xD4).20C23 = C2xD4.D14 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 112 | | (C7xD4).20C2^3 | 448,1246 |
(C7xD4).21C23 = C22xD4.D7 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 224 | | (C7xD4).21C2^3 | 448,1247 |
(C7xD4).22C23 = C2xD4.8D14 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 224 | | (C7xD4).22C2^3 | 448,1274 |
(C7xD4).23C23 = C28.C24 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 112 | 4 | (C7xD4).23C2^3 | 448,1275 |
(C7xD4).24C23 = C2xD4.9D14 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 224 | | (C7xD4).24C2^3 | 448,1276 |
(C7xD4).25C23 = D28.32C23 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 112 | 8+ | (C7xD4).25C2^3 | 448,1288 |
(C7xD4).26C23 = D28.33C23 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 112 | 8- | (C7xD4).26C2^3 | 448,1289 |
(C7xD4).27C23 = D28.34C23 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 112 | 8+ | (C7xD4).27C2^3 | 448,1290 |
(C7xD4).28C23 = D28.35C23 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 224 | 8- | (C7xD4).28C2^3 | 448,1291 |
(C7xD4).29C23 = C2xD4.10D14 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 224 | | (C7xD4).29C2^3 | 448,1377 |
(C7xD4).30C23 = C14.C25 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 112 | 4 | (C7xD4).30C2^3 | 448,1378 |
(C7xD4).31C23 = D14.C24 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 112 | 8- | (C7xD4).31C2^3 | 448,1380 |
(C7xD4).32C23 = D7x2- 1+4 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 112 | 8- | (C7xD4).32C2^3 | 448,1381 |
(C7xD4).33C23 = D28.39C23 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 112 | 8+ | (C7xD4).33C2^3 | 448,1382 |
(C7xD4).34C23 = SD16xC2xC14 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 224 | | (C7xD4).34C2^3 | 448,1353 |
(C7xD4).35C23 = C14xC4oD8 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 224 | | (C7xD4).35C2^3 | 448,1355 |
(C7xD4).36C23 = C14xC8.C22 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 224 | | (C7xD4).36C2^3 | 448,1357 |
(C7xD4).37C23 = C7xD8:C22 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 112 | 4 | (C7xD4).37C2^3 | 448,1358 |
(C7xD4).38C23 = C7xD4oD8 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 112 | 4 | (C7xD4).38C2^3 | 448,1359 |
(C7xD4).39C23 = C7xD4oSD16 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 112 | 4 | (C7xD4).39C2^3 | 448,1360 |
(C7xD4).40C23 = C7xQ8oD8 | φ: C23/C22 → C2 ⊆ Out C7xD4 | 224 | 4 | (C7xD4).40C2^3 | 448,1361 |
(C7xD4).41C23 = C14x2- 1+4 | φ: trivial image | 224 | | (C7xD4).41C2^3 | 448,1390 |
(C7xD4).42C23 = C7xC2.C25 | φ: trivial image | 112 | 4 | (C7xD4).42C2^3 | 448,1391 |